Decoder
latent.modules.decoder.Decoder
Decoder base model. This model decompresses a latent space to reconstruct the
input data by passing it through a DenseStack
. It also takes care of adding the
reconstruction loss to the model.
__init__(self, x_dim, name='decoder', hidden_units=[128, 128], reconstruction_loss=None, loss_name='rec_loss', initializer='glorot_normal', **kwargs)
special
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x_dim |
int |
Integer indicating the number of dimensions in the input data. |
required |
name |
str |
String indicating the name of the model. |
'decoder' |
hidden_units |
Iterable[int] |
Number of hidden units in |
[128, 128] |
reconstruction_loss |
Union[Callable, str] |
Function to compute reconstruction loss. |
None |
loss_name |
str |
String indicating the name of the loss. |
'rec_loss' |
initializer |
Union[str, Callable] |
Initializer for the kernel weights matrix (see
|
'glorot_normal' |
**kwargs |
|
Other arguments passed on to |
{} |