Main workflow

Functions executing the main Pando workflow

initiate_grn()

Initiate the RegulatoryNetwork object.

find_motifs()

Scan for motifs in candidate regions.

infer_grn()

Infer a Gene Regulatory Network with Pando

find_modules()

Find TF modules in regulatory network

Visualization

Functions to visualize the GRN

get_network_graph()

Compute network graph embedding using UMAP.

get_tf_network()

Get sub-network centered around one TF.

get_umap()

Compute UMAP embedding

plot_gof()

Plot goodness-of-fit metrics.

plot_module_metrics()

Plot module metrics number of genes, number of peaks and number of TFs per gene.

plot_network_graph()

Plot network graph.

plot_tf_network()

Plot sub-network centered around one TF.

Object interaction

Functions to interact with Seurat and Network objects

GetGRN()

Get network data

GetNetwork()

Get network

Network-class

The Modules class

NetworkFeatures()

Get network features

NetworkGraph()

Get network parameters

NetworkModules()

Get TF modules

NetworkParams()

Get network parameters

NetworkRegions()

Get network regions

NetworkTFs()

Get network TFs

Params()

Get GRN inference parameters

coef(<SeuratPlus>) coef(<RegulatoryNetwork>) coef(<Network>)

Get fitted coefficients

gof()

Get goodness-of-fit info

print(<RegulatoryNetwork>) print(<Network>) print(<Modules>) print(<Regions>)

Print RegulatoryNetwork objects

Regions-class

The Regions class

RegulatoryNetwork-class

The RegularotyNetwork class

SeuratPlus-class

The SeuratPlus class

GetAssaySummary()

Get summary of seurat assay

Model fitting

Functions to fit models

fit_bagging_ridge()

Fit a bagging ridge regression model as implemented in scikit-learn (python)

fit_bayesian_ridge()

Fit a bayesian ridge regression model as implemented in scikit-learn (python)

fit_brms()

Fit a Bayesian regression model with brms and Stan

fit_cvglmnet()

Cross-validation for regularized generalized linear models

fit_glm()

Fit generalized linear model

fit_glmnet()

Fit regularized generalized linear model

fit_grn_models()

Fit models for gene expression

fit_model()

Fit (regularized) generalized linear model

fit_xgb()

Fit a gradient boosting regression model with XGBoost

Utilities

Utility functions

aggregate_matrix()

Aggregate matrix over groups

aggregate_assay()

Aggregate Seurat assay over groups

map_par()

Apply function over a List or Vector (in parallel)

sparse_cor()

Safe correlation function which returns a sparse matrix without missing values

find_peaks_near_genes()

Find peaks or regions near gene body or TSS